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This paper describes two strategies for the accurate computations
of polentint derivatives in boundary eloment methods., The Tirst
method reguiarizes the quasi singularity in a fundamental solution
by referring the potentiat and its derivatives at the boundary point
nearest 1o a calculation point in a domain. in the second method,
a system of coupled equations for an unknown potential and its
derivatives at a calculation point is solved to improve accuracy.
Green's theorem unifies the derivation of the above methods, which
are shown to be suitable for computer implementation. Numerical
results show that the present methods considerably improve the
accuracy in the computations of potential derivatives. The errors in
the present methods are analyzed to evaluate their performance
for general cases. Although this paper describes the regularization
metheds for only two-dimensional problems, it is suggested that
those can be easily extended to three-dimensional problems.
i 1995 Academic Press, Inc.

1. INTRODUCTION

[n computations of a potential and its derivatives in a domain,
as well as in those of the elements in system matrices, the
boundary element method (BEM) usually eimploys the Gaussian
guadrature for the boundary integrals including a fundamental
solution, potentials, and their derivatives {e.g., 1). The accuracy
in those computations, however, becomes extremely poor as a
calenlation point approaches the boundaries, due 1o the quasi
singularity of the Tundamental solution. For this rcason, several
wethads for improving (he accuracy in BEM have heen pro-
posed so far. Although some regularization (echniques, e.g.,
hased on subtraction of Taylor polynomiais. for singular inte-
grals have been well known in potential theory, we restrict our
reference to the methods relevant to the regularization of the
quasi singularities in BEM below.

For the computation of potentials, Kisu et ¢f. [2] have regular-
ized the quasi singularity in the normal derivative of a funda-
mental solution using the potential difference between a cal-
culation point and the point on the boundary ncarest to the
calculation poing (boundary reference point), Enokizono er af.
[3. 4] have evaivated the nuimerical error in boundary integrals

and introduced a formula for ameliorating the accuracy of them.
Sladek et al. [5] have obtained a non-singular boundary integral
representation of e hirst-order derivatives of potentials using
the boundary reference points, Their method, in which the
strong singularity in the derivatives of a lundamental solution
is relaxed by partial integration, seems complicated for the
extension of it for the higher derivatives. The methed in Refs.
I3, 4] has been extended by Koizumi et al. [6] to that for the
higher derivatives. Although they obtained good accuracy by
their method, they had to choose appropriate harmonic func-
tions in their formula and an arbitrary constant remained. Hay-
amni et al. [7] have provided a coordinate transform techaique
for the evaluation of singular and quasi singular integrals. The
method, however, requires a number of integration points for
highly accurate computations.

In this paper, we introduce new formulas for the accurate
computation of potential derivatives, which include the methods
in Refs. {2. 3, 47 in the lowest order. The formulas are readily
derived from Green’s theorem without arbitrariness and have
simple forms svitable for computer implementation.

The remainder of this paper will be organized as follows. In
the next section, the two methods are derived by applying
Green's theorem to the combination of an algebraic function
with a fundamental solution. The third section provides the
numerical results for two simple potential problems to assess
the reliability of the presenl methods, 1o the fourth section, (he
numerical errors in the present methods, as well as those in the
conventional imcthod, are evaluated for general cases, The last
section includes some concluding remarks.

2. FORMULAS FOR POTENTIAL DERIVATIVES

We here restrict our consideration to two-dimensional poten-
tial problems. The present methods can be easily extended
to those for three-dimensional or axisymmetric problems. In
addition, we cousider oaly the zeroth, first, and second order
derivatives of a potential, which are thought to be of importance
for the application in physics and engineering sciences. Figure
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POTENTIAL DERIVATIVES

t illustrates the inner and outer potential problems under consid-
eration. In Fig. 1, x; (i = 1, 2} are the Cartesian coordinates with
the basis vectors x;, n and t denote the normal and tangential unit
vectors on the boundaries, respectively, and [, represents the
boundary at infinity. The vectors n and t are in appropriate
directions for the inner and outer problems as shown in Fig.
1. Moreover, the potential and its derivatives are assumed to
approach zero sufficiently fast as r — ¢ such that the line
integrals on T',, vanish.

In conventional BEM, the formulas for a potential u#(r) and
its derivatives at a calculation point r = (x,, x;} € Q

uw = | [6“("’ Gae'ir) u(r')w] ar, ()

on’ on’
au(r) _ dur)aGr';ry  G(r';rT) ,
o f r [ o O ]dr - @
a*u(r) du(®’) 3G r) PG ) ,
- — a2 3
ax;ix; [ T[ an’ dxdx; w(r’) dxdxdn’ arn @
are derived through Green’s theorem
aw av
2 T2 = ow oY
J“ {vViw — wVr) df) L (U Foi c?n) dr, 4

where i, j = 1, 2 and G(r'; r} denotes the fundamental solution
which satisfies V:G(r'; r) + 8(r' — r) = 0. In (1)—(3), the
fundamental solution and its derivatives are expressed in the
form

S
Glrir) = —5_log IR], @
1 R
V ‘. = e ——
G(r';r) 27 [RF
_”E(E_';L) =—n'-VG(';r), ©
dr
a b 7T T
t .I',_l F \\.\l
T / )
n i ‘
| L

FIG. 1. Two-dimensional potential problems. {1 denotes the demain under
consideration: (a) inner problem; (b} outer problem.
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where R = r’ - r and ] denotes the unit tensor.

When a calculation point r € (1 is in the vicinity of the
boundary I', the Gaussian quadrature applied to (1)-(3) fails
to accurately compute the boundary integrals including the
derivatives of the fundamental solutton. We modify the formu-
fas (1)-{3) to overcome this problem below.

2.1. Method A

We here introduce algebraic functions u(r’; r*), k = 0, 1,
2, of the points r’ and r* € £} U I,

u(r'; 1¥) = u(r*),
au(r*)’

(5 1) = wu(r's )+ (7 ) o

(9
! ! 1 i ! 8211 (I‘*)

s TR = () S (= X - xf‘)m-

Of course, {9) corresponds to the kth order Taylor expansion

of a potential function & around r*. The normal derivatives of

wr’, ¥y on I can be eastly found to be

dug(r';, r*) _

v 0’
an

Aur'; r*) ! Ju(r#)
an’ Coax

(10)

dur’; ¥y du(r’;r*) 4

, 2u(re)
an’ an' n )

dx; dx;

where n{ =n’ * x,.
Introducing now the correspondence

(u(r'} — uy(r’; rg), G(r'; 1)) — (v, w)

(n

in (4), we find a formula for a potential u(r),

uw = |, [G(r';r)a—‘;—f{,’—) - futr) .
AG' . r)

— (T’ ro)} an’

]dF' + (1 = pulry),

where 1y denotes the boundary reference point nearest to a
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calculation point r € {3, and 7 is a constant which takes its
values in the set {0}, 1} for inner and outer problems, respec-
tively. The constant % here comes from the identity for the
outer problem

Aulr’; 1p)

u(r; 1) = er [G(r'; r) o a3

aG(r';r ,
—~ ulr'; 1) #“)] dr’.

The formula {12) for the inner problem was introduced in Ref.
[2]. One can clearly see in (12) that the quasi singularity
in d¢G{(r’; r)/on’ is regularized by the difference u(r'y —
ug(r'; rp) which varies as |[r' — 1.

Moreover, applying Green’s theorem (4) to the combinations

(u(r') s ru),m) Sw).,  (14)
ax;
, , a:G(r';
(u(r ) — U ;ro),ﬁ) — (v, w), (13)
and using the identities
[JCOLL. PO a6)
Xi ax: T'=r
2 P 2 ’
I a? A’ 1) oy 9B , an
2 ax;0x; ax; ox{ |-

and the derivatives of (13} with tespect to x;, we have regular-
ized formulas for the potential derivatives

au(r):f [aG(r’;r) {Bu(r')_ iy (r's rg)
ax; r ax; an’ an'

2G(r r)]

—{u(r’) — (s v} dr’ (18)

au(rg) \

T

:Jr[a

= {u(r") — uy(r'; v}

#u(r)
6xjaxi

2G(r'; 1) {au(r') B

Aup(r’; 1p)
ax;0%;

an’ on'

FG'; 1)

’ 1
ax:ax;an’ ] a 19

Bzu(rg)

(- —2
M ex,

One can see again in (18) and (19) that the quasi singularity

in the derivatives of the fundamental solution is regularized
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by the differences du(r")/on' — duw(r’; ry)/on’ and u(r') —
u(r'; ry). In the computations of (18) and (19), the values of
the derivatives du(r,)/dx; and 9%u(r,)/dx;dx; are obtained from
the known variables ¢ and ¢ = dufdnon I as

dulry) _ du(ry)

ax Py —— ti(xo) T g(ro) niry), (20)
62

_au_g{ﬁ -2 ;(:0) = ot4(r) — aaba(r), (21)
2

Z;—S‘;) = aytily) + ouah(r), (22)

10Xz
_ azu(ro) au(ru) dr(ro)
e
20 + grg T 03)

where f; = t - X;. A technique for finding the boundary reference
point is described in Ref. [5] in detail.

The method derived in this section is referred to as Method
A in the remainder of this paper.

2.2, Method B

By replacing the boundary reference point ry for a calculation
point r in the correspondence (11), we obtain an alternative
formula for a potential as

_ .. ou(r’)
O—JT[G(r, P

aGr’;r)
H

— {ulr’)

(24)
—u(r'; o} ———— | dl" — nu(r).
At this time, the difference w(r'y — uy(r'; r) which varies as
Ir" — r| relaxes the quasi singularity in 9G(r'; r)/on’. After a
little rearrangement, (24) becomes

umy = [ [G(r'; 0 ) _ ) 0 ”] dr’ /

_ [ G
[77 JI‘ an' ar

from which one can compute the value of a potential. The
formula (25) for the inner problem was found by evaluating
the numerical error in boundary integrals in Refs. [3, 4]. Note
here that (25) is closely related to (12) through the selection
of r* in u,.

On the other hand, since the function u,(r'; r) includes the
three unknown quantities, i.e., the potential and derivatives of
the first order at a calculation point in itself, application of
Green’s theorem to u{r’; r) leads to a system of coupled
equations for the unknowns, in contrast to the formula obtained

] (25)
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in the previous section. We must, therefore, now consider
the combinations

(u(r) — w(r'; o), Grr))— (v, w),

sowin)

(26)
(u(r) = w(r';r),

in (4) to get the linear equations for the unknowns u(r) and
oufr)/ ax;,

. . u(r)  duy(x’yr)
O—L[G(r,r){ on’ lan' }

—{Mr)—umr,ﬂac& n]dr“-nwﬂ,
27N
0=J aG&ﬁm{wuqkam@tn
r Bx,- 61’1' 5?1'
’G J
—{u{x"y — uy(x'; r)} p (z ’r):| dr’ - n—?i—fz
Similarly, the combinations
(u(r") — wlr';r), Gr'; 1) — (v, w),
(u(r') — (' v), E%ﬂ) S@w),  (@8)

) 2G(r':
(u(r') — (1), a—:‘;x—r—)) — (W)
G OXG

apptied to (4) yield the linear equations for the second-order
dertvatives with a potential and the first-order derivatives as
follows:

— ’. du(r’) _ duar'; r)
()-—jr {G(r,r){ an’ an' }
— fu(e) = 'y} ZEEED ’)]  pa——
0= f aG(r i) {au(r ) auz(r ;)
rL  ox an' an’
- = . M— [ M
{u(r) = s ) 20 T = S
0=f-6@ﬁﬁﬂ{w&0_am&%ﬂ
r L ﬂxjax,- o’ an’
PO ¢l it ) | PP}
() — e 1)) dx;ixon’ | ar = m 0x;0%;

(29)

Since the function u(r) satisfies the Laplace equation, (29) is
reduced to simultaneous equations of five unknowns by replac-
ing 9%u(r)/dx} for —a%(r)/axi.

247

In Ref. [6], a system of coupled equations, which is similar
to but different from (27) and (29) and involves an arbitrary
constant for the second-order derivatives, was derived on the
basis of the evaluation of the numerical errors in boundary inte-
grals.

The method described in this section, which is termed
Method B in the remainder of this paper, has a favorable feature
that it does not need to find boundary reference points, in
contrast to Method A. On the other hand, the regularization in
Method B employs the differences such as a{r') — w{r'; r),
which are not expected to become zero, but small, in general,
for the calculation of points close to boundaries, contrary to
those in Method A. Finally, we point out here that the formulas
in Methods A and B are proved to be equivalent to those in
the conventional BEM, (1)—(3), unless there are numerical
errors in the computation of the line integrals.

3. NUMERICAL RESULTS

Potential derivatives are here calculated by the conventional
formulas (2) and (3), and the methods presented in this paper,
for two simple potential problems. In all the computations, the
Gaussian quadrature with 12 integration points is employed for
the line integrals on each boundary element.

Figure 2 shows the first problem. The potential in the square
is exactly given by u = a(l — x)/a). The boundary of the
square is uniformly subdivided into 12 line elements, in which
the potential i and its normal derivative du/dn are interpolated
by linear and constant functions, respectively. The boundary
values » and 4u/én are set 1o the exact ones on those elements.
In this case, the above interpolation suffices to exactly express
the boundary values. Calculation points are taken to be (I.d —
a, 0), where d denotes the distance normalized with respect to
element length /, = 2a/3. Of course, this simple problem does
not require any numerical integrations for boundary integrals.
We dare to employ the Gaussian quadrature, however, for
boundary integrals to see the basic performance of the pres-
ent methods.

. —
reference point

r,=(-a,0} x,

I

calculation point
r={ld-a,0)

2a

F1G. 2. Potential field in a square. The boundary of the square is uniformly
subdivided into 12 line elements of length /,, in which the potential and its
normal derivative are interpolated by linear and constant functions, respectively.
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FIG. 3. Error distribution of du/dx, ncar boundary for the problem shown
in Fig. 2.

The errors in du/dx, near a boundary are shown in Fig. 3.
The relative error E is here defined by (du/fdx; — )iy X
100 (%), where u,, is the exact value of the potential derivative
in x,-direction. It is seen in Fig. 3 that both methods presented
in this paper give accurate results even in the vicinity of the
boundary, while the conventional formula yields tremendous
errors there.

The second test problem is shown in Fig. 4, in which a
cylindrical magnetic material of radius a is immersed in a
uniform, static magnetic field Hy = (Hy, 0). In this problem, the
potential &, which is here defined by H = —Vu, is analytically
expressed in the form Hyx[a*(p, — Ui, + 1) — r21/r* for
r=qgand —2Hu,x /(1 + w,) for r = a, where u, denotes
the relative permeability of the magnetic material and r =
Vx1 + x%. The boundary of the cylinder is uniformly subdi-
vided into 36 quadratic elements of length /, = 2an/36. Each
element has three nodal points, at which the exact values of
the potential and normal derivative are provided. Calculation
points are located at (& + [.d, 0}, where d represents again the
normalized distance. Note here that, in this problem, the normal
derivatives of potentials on I" are discontinuous. Thus the differ-
ent analytical values of the normal derivatives are used in
boundary integrals for inner and outer problems.

Figures 5a and 5b show the resultant error distributions for
the first-order derivative du/dx;. The relative error E is defined
by (du/ax; — w ) u(0) X 100 (%), where 1, (0} is the exact
value of du/dx, at & = + 0. Actually, in this problem as well
as in the first one, the conventional method yields considerable
errors in a zone adjacent to the boundary. Contrary to this, both
methods proposéd in this paper provide accurate results at all
the points.

The results for the second derivative 8%u/dx? are shown in
Figs. 6a and 6b. In this case, the relative error E is defined by
(070 3x3 — 10,0 V1t (0) X 100 (%), where u,,(0) is the exact
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value of #%u/dx at 4 = +0. Tn this case, the conventional
method fails at points farther from the boundary due to the
strong singularity in the kernel, on comparison with Figs. 3a
and 5b. While the extreme approach of the calculation points
to the boundary slightly deteriorates the accuracy of Method
B, Method A computes #*u/dxi in good accuracy at all the
calculation points.

4. DISCUSSION

In the previous section, the numerical examples show that
the present regularization methods clearly improve the accuracy
in potential derivatives. We here evaluate the numerical errors
produced by the methods to see those performances from a
general point of view.

We begin with the error analysis for Method A. The coordi-
nates x;, potentiat u, and its spatial derivatives are assumed to
be normalized by the appropriate corresponding values hereaf-
ter. The difference Au(r)™ between the potential value numeri-
cally obtained by (1) and the exact value is decomposed into
the error g from numerical integration and the other error &
from, e.g., rounding, truncation, and discretization of a sys-
tem, as

Au(n)™ =g + ¢g,. (30)

The present method cannot control the error £ but it reduces
the integration error g; as shown below,

The substitution of the Taylor expansion of the potential
u(r’) in (1) around a boundary reference point ry into (1) gives

du(ry)
ax; 31

Au(r)® = & + 8(r)u(ry) + (1, 1)

2
oure) ,

+ Sy(rg, T
;k( 0 ) axjaxk

k]

where

H,=(H,, 0) —» reference point

r,={a, 0}

/

calculation points
r=(a+ld,0

vacuum

FIG. 4. A cylindrical magnetic material immersed in a uniform magnetic
field. The boundary of the cylinder is uniformly subdivided into 36 curved
elements of length /,, in which the potential and its normal derivative are
approximated by the quadratic interpolation functions.
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4; (b) outside the cylinder shown in Fig. 4.

sy = -A [ OG(" G50 g,

di(ry, 1) = AJ.[‘ [H;G(r’; r)

,__aGrin]
— (X —Xp)——— o ]dl“

@ﬂmﬂzﬂh[ﬁm—nwaﬂﬂ

and

- 30 = )k — 3 / M] ar,

0 b
-20 # Conventional
o Method A

-40 A Method B

60

-80
_100 1 | ) L

1] 0.1 0.2 0.3 0.4 0.5

(32a)

(32b)

(32¢})
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Af -dr= Ur-dr]mm_m - UF eru. (33)

One observes that the quasi singularities in boundary integrals
in (32a) and (32b) are weaker than those in (32b) and (32c¢), re-
spectively.

The application of the Taylor expansion to {12) also yields
the error Au(r)* for Method A as

Au(n)h =

Ju(r, 9%u(r
(ry) (Ko, (ry) +

+ 8{ry,
€ ( 0 ) axj‘ Sx_,axk

(34)

By comparing (31) and (34), we see that Method A eliminates
the error 8(F)u(ry) in (31). Similarly, one can estimate the errors
Adu(r)/ax; in the first derivatives of a potential, that is,

100
a

80 @ Conventional
g o Method A
% 60 |- A Method B
£
(]
w
=
o
=
=]

-0.5 -0.4 -0.3 -0.2 -0.1 ¢
Normalized distance d
100 {—
b
B0 ® Conventional
% 0 Method A
M 60 & Method B
2
3
o
2
& 40 -
a
=
20 -
4
0 &\L“‘é B—6 o6 —& *——o
0 0.1 0.2 0.3 0.4 0.5
Mormalized distance d

FIG. 6. Error distribution of d%/dx%: (a) inside the cylinder shown in Fig.

4; (b) outside the cylinder shown in Fig. 4.
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du(ry |©¥ , Au(ry)
[A—ax,- ] = &' + &ru(ry) + 8i(ry, 1) 5 (35)
: 3*u(ry)
+ Silry, 1) —2 +
(Ko, ) ax,0x,
for (2), and
du(r) |*
[A gif)] = 5;k( Fo. F) ugruk) (36)

for (18), where the superscript i above 8, §;, and §, denotes
the derivative with respect to x;. In this case, the numerical
errors relevant to & and & have been removed in (36).

When the boundary valoes u(r,) and du(ry}/ éx; vsed in (12)
and (18) have numerical errors Au(ry) and A[du(r,)/9x], re-
spectively, the errors (34) and (36) for Method A should be
replaced by

Au(r)* = & — 8DAu(ry) + §(r;, 1) duxy)
A (34
3%u(ry)
+ B(xy, 1) —'_axj ax, + .
A
[A r—a”(’)] = & — §(r)Au(ry)
ax;
_ 6:(1.0’ r)A [au(rﬂ)] + 6ik(r0, I') m + (36’)
dx; ax;0x;

As shown in (34") and (36"), Method A works well whenever
the errors Au(ry} and A{du(ry)/dx;] are sufficiently small. Since
Method A gave successful results to the test problems men-
tioned in the previous section, these conditions were thought
10 be well satisfied in those computations. One can evaluate
the errors in the second derivatives of a potential in a similar
way. Note here that the errors ¢ and ¢’ remain unchanged in
Method A.

We next perform an error analysis for Method B. By ex-
panding the potential #(r’) around a calculation point r, we
can rewrite the numerical error in (1) as

Au(n)® = g + 8nulr) + §(r) au(r) S(r )32!,4!;1')
k
(37
Similarly, the error in (25) is evaluated as
_ 1 au(r) 3u(r) .
AH(P)B—1+6(r)[ + 8() ax) *()aak ]
(38)

As we see in (37) and (38), Method B eliminates the etror
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&(r)u(r) in (37). In addition, the residual error in the square
bracket in (38) is divided by 1 + &(r). Since &(r) usually takes
the range —0.5 = &(r) = 0 [3], this division seems to give
undesirable effects for the accuracy in Method B. The term
S(r)u(r), which is usvally dominant in (37), has vanished in
(38) and thus this undesirable effect may seldom give rise to
serious problems under wide conditions.

The error in the first derivatives of a potential is expressed as

cy
[A agir)] = & + S(ru(r) + o(r) 2D
‘ ' (39)
2
J'JC( )a u(iz T

for the conventional formula (2), while the errors in (27) are
given by

| Au(r)® |
[ A au(r)]B 1+ &r) ) Sy |
an 1 =] s 14 Sl Si(r)
[ A ém(r)]B &(r) SHr) 1+ 8%r)
L9 ]
B 3 7
s amTE s
2
&' + Si(r )3 “‘;rf (40)
£+ Sr )‘32”;?

We see that (40} does not include the second and third terms
in the right-hand side of (39), which may be much greater than
the other terms. Instead, the residual errors in the column vector
in right-hand side of {40}, which are also expected to be small,
are increased by [A]™' times, where [A] represents the 3 X 3
matrix_in~(40). The accurate first derivatives obtained by
Method B for the test problems suggest that this undesirable
effect did not significantly deteriorate the accuracy in those
computations.

The errors in (29) can be expressed in a matrix form similar
10 (40). The errors in the second derivatives in the vicinity of
the boundary, shown in Figs. 6a and 6b, are probably ascribed
to an error enhancement due to the matrix [A]™'. In particular,
the error observed in the outer region seems to have a great
contribution from the non-zero third derivatives multiplied by
[A]7Y, in contrast to that in the inner region in which the third
derivatives equal zero everywhere.

The results obtained above will be further applied to the
error analysis for the potential in the first test problem in the Ap-
pendix.
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TABLE I

Errors in the Potential for the Problem Shown in Fig. 2

Meihod B

Noimalized Conventional Method A

distance o computed computad Computed Estimated
0.00 —5.047 % 107! —4.627 x 107 —9.253 x 107} —-9.255 % 107
0.04 —1.201 x 10! —8.530 x 107 =274 x 107} 2774 X 1073
0.08 —1.836 x 1077 —1.251 x 10 —-6.227 x 107 —-6.227 X 107
.12 —-2.621 X 107 — 1805 x 10~ —-1.225 » 10~ —1.225 x 107
0.16 —3.823 X 107 ~2.694 x 10°® —=2.206 x 10°° —2.295 % [07?
0.20 —5823 X 107 —4.217 x 107 —4.277 X 107 —4.276 X 10°°

5. CONCLUSIONS

This paper has described two strategies for the accurate com-
putation of the potential derivatives in BEM. Both methods
presented in this paper are shown to effectively improve the
accuracy in thase computations. From the viewpoint of com-
puter implementation, Method B is superior to Method A since
the later involves a procedure for finding the boundary reference
points. The error evaluation reveals that errors may be found
in Method A, when there are significant errors in the values of
potentials and its derivatives at the boundary reference point,
and in Method B, when the residual errors including the value
of higher order derivatives are not negligible. The present meth-
ods, however, reasonably regularize the quasi singularities in
boundary integrals, except under extremely poor conditions.

Both methods are easily realized for computer applications
without an involved algorithm. Moreover, the present formulas
are readily derived by applying Green’s theorem to the combi-
nations of the algebraic function u, and the fundamental solu-
tion. This suggests the possibility that those formulas can be
extended to those for more practical field analyses in mechanics
and electromagnetics.

APPENDIX

In general, it is difficult to directly compare the accuracy of
Method A with that of Method B on the basis of the error
evaluation given in the fourth section. Nevertheless, we can
obtain a quantitative relation among numerical errors in some
variables such as the potential for the first test problem shown
in Fig. 2, to which we will apply the results obtained in the
error analysis.

When the constant & and boundary reference point r, are
taken to be unity and (—3, 0) in the first test problem, respec-
tively, from (31), (34), (37), and (38), we estimnate the numerical
errors in u(r) as

Au(m)™ = & + 8r) — §{r,. 1),

Au(r)* = & — §(ry, 1),

(Al)
(A2)

Au(®) = g + Sr)ulr) — 5(r), (A3)
_ £~ 8(r)
Au(r)® = -——"—1 Ry (Ad)

Note here that, in this problem, the spatial derivatives, except
duldx,, are equal to zero everywhere. In addition, the variables
at r, were assutmed to have no errors in the above evaluation,
From (A1) and {A2), we have

8(r) = Au(r)™ — Au(r)™. (AS)
The insertion of (A3) and (AS) into (A4) vields
Au(r)® = Au(e)*Y [1 — u(r)) + Au(r)’*u(r)_ (A6)

1+ Auw(e)Y — Au(r)?

This is the relation among the errors Aw(r)*¥, Au(r)*, and
Au(r)®. Table I displays those errors near x; = —#%, with Au(r)®
estimated from {A6). We see good agreement beitween the
computed value of Au(r)? and the estimated one by (A6).
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